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FOREWARD 

This work was supported by National Aeronautics and Space Adminis- 

tration under Contract NASr- 119. Invaluable assistance in the development 

of the solution has been gained by frequent discussion with Dr. C. Treanor 

of the Aerodynamic Research Department of Cornell Aeronautical 

Laboratory. The solution has been coded for use on an IBM 7044 by Mr. L. 

Garr of the Computer Services Department of Cornell Aeronautical 

Laboratory. 
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ABSTRACT 

A method for the numerical solution of the flow behind a nonaxisym- 

metric bow shock is described. This method has been programmed for an 

IBM 7044 digital computer for the case of an ideal gas, and the calculation 

time is approximately ten minutes. For a specified bow shock the program 

generates the subsonic flow, a portion of the supersonic flow, and the body 

shape which will support the specified shock. Sample results are shown 

for three different shock shapes. 
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INTRODUCTION 

Aerodynamicists have for some time been interested in the problem 

of the flow around the nose of a blunt body moving at hypersonic speed. A 

number of methods have been devised for the solution of this problem. 

Most have been limited to the case of an axisymmetric body at zero angle 

of attack, and some have included nonequilibrium chemistry l-8 . A few 

have considered, with certain restrictions, nonaxisymmetric bodies or 

bodies at angle of attack9-12. 

The methods of solution of the blunt-body problem can be divided 

into two broad classes; those defined as direct methods and those defined 

as inverse methods. In the direct method the shape of a particular body, 

its velocity and its angle of attack are specified. The solution then predicts 

the flow field over the nose of the body as well as the shape of the detached 

shock wave ahead of the body. In contrast, the inverse method begins 

with a specification of the shape of the shock wave. Then, for a given 

flow velocity and direction, the solution predicts the flow field behind the 

shock and the shape of the body supporting the shock. 

This paper discusses an application of the inverse technique to the 

calculation of the flow field behind a nonaxisymmetric shock set at an ar- 

bitrary angle of attack. The solution is at the present time limited to an 

ideal gas. It has been the purpose of this work to generate a high-speed 

numerical program which could be used for the investigation of various 

aerodynamic problems associated with nonaxisymmetric flows, and for a 
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test of the analytic relations that are obtained by making approximations to 

the complete equations. To accomplish this end the inverse method of 

calculation was chosen, since the single specification of the shape of the 

shock wave supplies the complete boundary condition for the problem, even 

when chemical reactions are included in the calculation. 

One disadvantage of the inverse method is the fact that the body 

shape cannot be specified a priori, but must be calculated along with the 

flow field for any choice of bow shock shape. This characteristic of the 

method would require an iterative procedure if the flow around a specific 

body were to be studied. A second disadvantage is the known instability of 

the inverse method, in that any irregularity introduced into the calculation 

is quickly magnified in later steps. This aspect of the problem requires 

that the calculation procedure be very smooth and accurate, so that no per- 

turbations are introduced by the numerical methods. For example, if a 

cylindrical coordinate system is used for the calculation, the cancellation 

of terms of order .1/h. in the flow conservation equations introduces 

numerical perturbations at points near the axis ( & small). Numerical 

smoothing routines during the calculation are then required to obtain a solu- 

tion. However, the difficulty can be circumvented by using Cartesian co- 

ordinates, whereupon large and nearly equal subtractive terms do not 

appear. This is the method used in the present program, and no smoothing 

techniques have been required. 

The results of several sample calculations are included in the 

present report. These calculations were performed to check the accuracy 

of the program and to determine the stability and calculation time. The 
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accuracy is demonstrated by comparison with available results for an 

axisymmetric case. All of the test cases demonstrate that the calculations 

in the rectangular coordinate system are not affected by the instability. 

The calculation time is about 10 minutes on the IBM 7044. 

GENERAL METHOD 

The general approach to the solution using the inverse technique 

will be briefly outlined here. A more detailed description of certain as- 

pects of the method will follow. 

An assumed bow shock shape is shown in Fig. 1. The solution is 

begun immediately behind the bow shock and is extended to the body via a 

numerical integration scheme. Initial values for the flow-field variables 

are first defined, through the oblique shock relations, at a large number of 

data points behind the shock. These initial data points are themselves de- 

fined by the intersections of planes of constant y and z on the surface of 

the shock wave. Representative traces are shown in Fig. 1. Each trace 

is identified with a subscript; the subscript j is associated with a plane of 

constant y, the subscript 4 with a plane of constant z. Therefore, 

each data point is associated with a particular j d subscript. 

It will be shown later that the flow conservation equations, origi- 

nally containing partial derivatives with respect to x, y, and z, can be 

reduced to a set of equations containing only partial derivatives with re- 

spect to x and total derivatives along the traces of constant y and z. 

These total derivatives of the flow variables along the traces of constant y 
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and z can be evaluated by numerical differentiation, since a whole series 

of data points is located along each of these traces. 

The procedure at any particular data point employs the reduced flow 

conservation equations to define partial derivatives of the flow variables 

with respect to x. The partial derivatives are computed using the numeri- 

cally determined total derivatives evaluated along the two traces which 

intersect to form the data point. 

Then, using the initial values of the flow variables at the particular 

data point, and the partial derivatives with respect to x which were deter- 

mined as discussed above, an integration is performed along a ray, parallel \ 

to the x-axis, behind the initial data point. The solution for the values of 

the flow variables is advanced a distance Ax behind the original data 

point. This procedure is performed simultaneously at all the initial data 

points on the shock and the solution is advanced the same distance, A x , be- 

hind each point. In other words, a whole new set of data points is defined a 

distant e A x behind the shock and forms a new surface, parallel to the 

shock, at that location. Since the values of the flow variables are known at 

every point on this new surface, the surface can be treated in exactly the 

same way as was the shock. That is, at every point new partial derivatives in the 

x-direction are computed utilizing total derivatives along traces in the dis- 

placed surface. These values of the x-derivatives are then used to integrate 

another step, Ax , into the flow field. The procedure is repeated until 

the integration rays, which are parallel to the x-axis, strike, or define, 

the surface of the body. 
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The solution is normally started with approximately twelve planes 

of constant z and 25 planes of constant y. The intersections of the traces 

of these planes on the surface of the shock therefore define 300 initial data 

points just behind the shock wave. Approximately 10 integration steps are 

normally taken before the solution reaches the surface of the body. There- 

fore, in a typical solution the properties of the flow field will be defined at 

approximately 3000 points. 

Definition of Initial Conditions 

The initial conditions behind the bow shock depend on the freestream 

Mach number and the local angle / 
J-4 

between the freestream velocity 

vector and the inward directed normal to the shock surface. This angle 

can be found through use of the relation 

where u,~/u and U. are the components of the unit freestream velocity 

vector and n,, 1 
Y 

and n, are the components of the unit vector normal 

to the surface of the shock. ~jl is the complement of /Bjd and is 

used in many of the latter equations. 

If the shock is defined by an equation of the type 

then the components of the unit vector normal to the shock are defined by 
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The freestream velocity vector lies in the x-y plane, which is the plane of 

symmetry for the description of the bow shock. Thus the component Us 

is defined to be zero, and the expression for A& 8;~. becomes simply 

where u, z /c6;va and We =&a , and oc is the angle of attack; 

i. e., the angle between the freestream velocity and the x-axis. This ex- 

pression for sin aj& is used in the oblique shock relations to define the 

initial values of the pressure and density as shown below. Initial values 

are denoted by the superscript ( rc/ )* 

where M, is the value of the freestream Mach number and 7’ is the 0 

freestream ratio of specific heats. Here, the pressure has been nondimen- 

sionalized by the freestream value of p,’ I/’ 
a 

0 and the density by pO’ . 

The primes ( )’ indicate dimensi onal quantities and U ’ 0 is the magni- 

tude of the total freestream velocity vector. 

The relations for the initial velocity components, & , sJ4 and zik 

can conveniently be determined by resolving the initial velocity into com- 

ponents tangent and normal to the shock wave. These components can be 

further resolved into CL, w and xv components. The tangent components 
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are unaltered when passing through the shock. The normal component 

suffers a normal-shock loss, so that the ratio of its magnitude behind the 

shock to its magnitude ahead of the shock is the reciprocal of the density 

ratio given above. The final expressions for the initial velocity components 

at a particular data point ( j,&) are 

In summary, the initial conditions, and in fact the entire problem, 

are characterized by the freestream value of the Mach number by 7 . 

and by the slope of the shock at any point. In using the program, the only 

restrictions on the expression describing the particular shock shape chosen 

are that (I) the expression must be differentiable so that expressions for 

37, , ?-$ , and 77, may be found, and (2) the expression must yield a unique 

solution for the values of x, y, and z on the shock surface. Polynomial 

expressions for x in terms of y and z are well suited for use with the 

program. 

Derivation of the Complete Differential Equations for Numerical Integrations 

As discussed earlier, once the initial conditions are defined at a 

point directly behind the shock wave, a numerical integration is performed 

in the x-direction in order to generate the solution for the flow field. In 

order to perform this integration, one must know the partial derivatives 

with respect to x of the nondimensional flow variables, p,PpP ucIw9 
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and -w. This section will briefly describe the derivations of the x- 

derivative equations. 

The nondimensionalized equations of motion for an ideal, inviscid 

gas written in a Cartesian coordinate system are shown below: 

Continuity 

Momentum 

(lb) 

(lc) 

(Id) 

Entropy 
3P 

u ax 
rfk * + /y- ap ffpw -- - --- ap 

P ax 9 p qf 
-_ 7Pw ap 3P 

+Au- ai? P a?! 
(14 

/ 

‘(1) 

The above equations, which contain partial derivatives with respect 

to x, y, and z, will be reduced to a set of equations involving only partial 

derivatives with respect to x and directional derivatives which will be nu- 

merically evaluated. The numerical derivatives are taken along the two 

traces in the surface which intersect to define the data point in question. 

It remains to eliminate the terms which contain partial derivatives 

with respect to y and z and replace them with other terms which can be 

evaluated numerically. These other terms are derivatives along the trace 

defined by the intersection of the integration surface (initially the shock 
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surface) with the plane of constant I 
(2$I, > 

or with the plane of constant 

iP(*I, )* 
These directional derivatives are symbolized by a specific 

subscript for the coordinate that is held constant (y or z), and it is under- 

stood that the derivative is taken within the integration surface. If 8 
Y 

is defined as the angle between the x-axis and the trace defined by the plane 

of constant y, and 0, as the angle between the x-axis and the trace de- 

fined by the plane of constant z, then, for example, 

(2) 

(3) 

where 
% 

and 8, are geometry factors of the initial shock shape given 

Substitution of relations of the type of (2) and (3) into Eqs. (I) gives, after 

rearrangement and collection of terms within individual equations 

(4) 



where 

The terms on the right hand side are given by 

Equations (4) define the five unknown partial derivatives in terms 

of five simultaneous equations. It should be noted that the directional de- 

rivatives are all collected on the right hand side of each individual equation. 

The simultaneous solution of the above five equations yields the following 

expressions for the unknown partial derivatives 
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-= 

where 

The overall procedure, then, is as follows. At each initial data 

point behind the shock wave, the initial values of P, ,Q , u, w, and w are 

computed as in the previous section. Then, at each data point, the dir- 

ectional derivatives of all five variables are obtained along the two traces 

which intersect to define the data point. The values of these derivatives 

are then used in the calculation of E. F, G, H, and I at each point. Then 

these parameters, along with the sin 
*7 ’ 

sin 6, , tan 0 
7 

, and tan @a O 

which also vary from point to point, are used in the calculation of the partial 

derivatives with respect to x. Finally, the partial derivatives are numer- 

ically integrated forward in x until the solution reaches the body. In the 

present program, a 4th order Runge-Kutta method is used in the integra- 

tion process. 

The following section will discuss the method whereby the numerical 

derivatives discussed above are obtained. 
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Numerical Derivative Evaluation 

As discussed in the previous section, directional derivatives must 

be taken along the traces defined by the planes of constant y and z. 

These derivatives are required in order to compute the partial derivatives 

with respect to x at any particular data point. The sketch in Fig. 1 indi- 

cates the manner in which the data points are defined on the shock surface. 

The planes of constant y and z are separated by constant increments, A 
7 

and hr. The increments in y are not necessarily equal to those in z . 

When evaluating the numerical derivatives at any point, say the 

point defined j = 3, & = 4 in Fig. 1, the derivatives along the trace are 

first computed with respect to either y or z as appropriate and then con- 

verted to derivatives with respect to arc length. This is done in order to 

take advantage of the fact that the data points are equally spaced in terms 

of the coordinate distances whereas they are unequally spaced with respect 

to arc lengths. The program utilizes a least squares fitting routine. A 

fifth-order polynomial is fitted through the values of each of the variables 

at seven consecutive data points with the point in question normally being 

the central point. The values of y or z for the seven points being con- 

sidered are temporarily changed by translating the origin so that the value 

of y or z at the central point is zero. For example, 
P 

may be given 

on the integration surface by 

Then 
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where z is the initial value of x on the shock surface for a given value 

of y and z. Since the value of y is defined as zero at the point in 

question, the value of the derivative is given simply as 

ap 

9 
I 2,x-I 

= a, 

When the data points on the outer edges of the mesh are being con- 

sidered, a slightly different procedure must be used. The values of the 

derivatives at the last three data points on a trace must be evaluated using 

a value of y or z not equal to zero. For example, since y is defined 

as zero at the central point, the value of y at the point defined by the upper- 

most plane of constant y is 3 a 
Y- 

Therefore, at that point, the formula 

for the derivative cannot be reduced to one term. All the terms must be 

considered, with a y of 3 A 
7 

being used in the calculation of the deriva- 

tive. The above discussion also applies to the data points defined by the 

last three planes of constant z. 

The coefficients used in the equation for the total derivatives are 

functions of the values of the variables at the seven data points. The for- 

mulas for the coefficients are 

a I 
- ’ = 6OA.J [ -E,+Yf_,-+5F_, +45F; -?F2 t-F 3 1 

I az = 264(N)= C -ES,+ 67F_, -1ql=,-7oF,-19t=j +67<-1351 

a3 = 4s$ala C F,-8I=,+/3F_,-/3F, OF,- 
';I 

a4 = 
I 

264@ PI4 [ 3E3-7F_, + F-, +6c +F, -75 +3F,] 
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I 
a5 = 

24O(AP)" [ 
- Fm3+41=+ -SF-, + SC -45 + <] 

where nl refers to either the increments in y or z as appropriate 

and F stands for one of the seven different values of the variables being 

differentiated. The subscripts on F define the data point from which each 

of the values of the variables are taken. The subscripts range from minus 

three through zero to plus three. 

After the derivatives with respect to y or z have been computed 

as above, they are converted to derivatives with respect to arc length by 

applying the following formulas 

dF =aF 
I 

I 
-z- 3 a% z,x -iy 

The terms -$- 
I 

(qq)l z 
are the values of the integrand in the formula 

7 
for the arc length at any point on the trace. They are given by 

In summary, the directional derivatives of the five variables P 9p9 UP 

@-i and rcr are determined through a fifth order least squares fit through 

seven consecutive data points. The derivatives are first computed with 

respect to y or z and are then converted to derivatives with respect to 
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arc length along the traces of constant y or z. These derivatives are 

then used in the reduced flow conservation equations to obtain the partial 

derivatives of the independent variables with respect to x. 

Definition of the Bodv 

As discussed previously, the inverse method of solution is begun 

with a known shock shape and is then used to compute the shape of a com- 

patible body. To obtain a definition of the position of the body, a relation 

which describes the conservation of mass along any integration ray is em- 

ployed. At the point where the mass entering the shock wave is balanced 

by the mass loss, the body has been reached. 

To consider this question in more detail, imagine a group of cylinders 

of vanishingly small cross- sectional area constructed around each indivi- 

dual data point on the shock, and extending parallel to the x-axis to the 

point whe-e they strike the body, The mass flux entering such a cylinder 

per unit cross-sectional area (divided by the freestream mass flux per 

unit area) is given by 

Flux entering per unit area of shock wave = U, n = n,~0c+x~&oL 

To obtain the flux per unit area in a constant x plane, this relation must be 

divided by the cosine of the angle between the x-axis and the normal to the 

shock wave (i. e., must be divided by xX ). Thus 

Flux entering per unit area dfd* = cos d -t sin oc 

The flux passing out through the walls of a cylinder of cross-sectional area 

d 
Y 

dt and length dzc is given as 

Flux out = c - E - ap SW (irC+wD) ax -,Qc ax - 
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where the symbols are as defined in the section describing the derivation 

of the x-derivatives. This formula is simply a result of applying a differ- 

ential continuity equation along the integration ray. The total mass flux 

out through the wall is integrated along with the values of the other var- 

iables in the problem and is subtracted from the initia.l mass flux passing 

in through the shock. This defines the value of the excess mass on any 

particular integration ray as a function of x. When the excess mass falls 

to zero along any ray, then that ray is said to have struck the body. In 

this way, every individual integration ray can be used to define an indivi- 

dual body point. 

RESULTS OF SAMPLE CALCULATIONS 

The first test case was an axisymmetric shock wave at zero angle 

of attack. The shock shape chosen was the “elliptic-catenary” with an 

axis ratio of 1. 0, i. e. , an axisymmet ric catenary shock. The freestream 

Mach number was 13.98. This allowed a comparison to be made with pre- 

vious results generated by the program described in Ref. 3. The shock 

and body shape for this case are shown in Fig. 2. As is seen, the compar- 

ison between the location of the two bodies is excellent. A check of the 

values of the variables throughout the flow field also showed excellent agree- 

ment with the earlier results. Relatively small step sizes were chosen in 

this case, so that seventeen integration steps were taken before reaching 

the body. Later experience has shown that the integration step size can be 

increased considerably. The running time for this case was, however, 

still short, being approximately eleven minutes. It should be emphasized 
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that no simplifications arise because the case is axisymmetric. For in- 

stance, none of the deri.vatives reduces to zero in the Cartesian coordinates 

as they would in cylindrical coordinates. Therefore, this case represents 

an excellent check of the entire program. 

The next test case again utilized the elliptic-catenary shock but 

with an axis ratio, b , of 2. 0. That is, at a given x-location, the distance 

from the x-axis to the shock in the x-z plane was twice as great as the 

distance from the x-axis to the shock in the x-y plane. The results for 

this highly nonaxisymmetric case compared well with the results of an 

earlier (unpublished) case calculated using cylindrical coordinates. The 

cylindrical-coordinate case required extensive smoothing of the derivatives 

in order to run, whereas the case in Cartesian coordmates required no 

smoothing whatsoever. 

The shapes of the shock and body are shown in the x-y and x-z 

planes in Fig. 3. Figure 4 is an isometric drawing of the body, which has 

an axis ratio considerably larger than that of the shock wave. It should be 

pointed out again that no smoothing has been applied to the solution, either 

during the calculation or in the drawing of the body shapes. 

The next test case was calculated with an axisymmetric shock set 

at an angle of attack of 15’. The purpose of this case was to show that the 

introduction of the few terms which are zero when the angle of attack is 

zero do not cause any difficulty when computing the solution. Actually, 

once the initial conditions have been defined, it is unimportant to the pro- 

gram what the external conditions are. The runge-Kutta integration 

proceeds in exactly the same way for every case. The results of the 
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calculation for this shock shape are shown in Fig. 5. A thinner shock layer 

is seen somewhat below the x-axis. The body curves back above the x-axis 

in order to support the shock. 

The cases discussed above were test calculations to demonstrate 

the ability of the program to generate the subsonic flow behind arbitrary 

specified shock waves. The particular forms used in these test calculations 

were chosen for convenience, but it is emphasized that the program can be 

used directly with any smoothly varying shock wave that has a plane of 

symmetry. The accuracy of the results is attested to by the stable gener- 

ation of the flow field and smooth supporting blunt bodies. 

SUMMARY AND CONCLUDING REMARKS 

A method has been presented for the calculation of the flow over 

nonaxisymmetric bodies at angle of attack. The solution utilizes the in- 

verse technique wherein the shock shape is specified and the body shape is 

computed. The shock shape is required to have a plane of symmetry, but 

is otherwise arbitrary. The solution has been coded for use on an IBM 7044, 

typical calculation times for a complete solution with 300 integration rays 

being of the order of ten minutes. To date, only an ideal gas has been 

considered. 

Sample cases have been calculated which show that the method can 

be used to compute the flow behind highly nonaxisymmetric shocks and shocks 

at large angle of attack. 
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The present program can be utilized for the numerical investigation 

of questions concerning the subsonic flow region ahead of a blunt super- 

sonic body. Of particular interest in this regard is the location of the stag- 

nation point and the details of the stagnation flow region for blunt bodies at 

angle of attack. The trajectory of the maximum-entropy stream line in 

such cases is also of interest in connection with the question of whether 

or not this stream line wets the body surface. 

Because of the short computing time required by the present program, 

it is felt that it would be practical to include the effects of finite rate 

chemistry in the calculation at a future date. In addition, the method may 

lend itself to an iteration procedure wherein the shock shape is progres- 

sively modified to obtain a desired body shape. The complete generality 

of the shock specification would make the program well suited for this 

application. 
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